Logic/Implication and equivalence

From Internet Web School

(Difference between revisions)
Jump to: navigation, search
(Created page with 'Logic > Implication and equivalence == Contents == * Category:Mathematical logic(Wikipedia) * [[wikipedia:Boolean_algebra_(l…')
 
Line 7: Line 7:
* [[wikipedia:Material_conditional|Material conditional]]
* [[wikipedia:Material_conditional|Material conditional]]
* [[wikipedia:If_and_only_if|If and only if]]
* [[wikipedia:If_and_only_if|If and only if]]
 +
 +
== Overview ==
 +
 +
===Implication(→)===
 +
 +
"α→β" is "α implies β." or "if α then β."
 +
 +
0 means false, 1 means true, and ≡ means equivalent.
 +
 +
Case of implication. "P→Q" ≡ "¬P∨Q" ≡ "¬(P∧¬Q)"
 +
 +
{| border="1" class="wikitable" style="background-color:#ddf"
 +
! style="background:#ffdead;" | P 
 +
! style="background:#ffdead;" | Q 
 +
! style="background:#ffdead;" | P→Q 
 +
! style="background:#ffdead;" | ¬P 
 +
! style="background:#ffdead;" | ¬Q 
 +
! style="background:#ffdead;" | ¬P∨Q 
 +
! style="background:#ffdead;" | P∧¬Q 
 +
! style="background:#ffdead;" | ¬(P∧¬Q) 
 +
|-
 +
| 0
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 1
 +
|-
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 1
 +
| 0
 +
| 1
 +
|-
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 1
 +
| 0
 +
|-
 +
| 1
 +
| 1
 +
| 1
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
| 1
 +
|-
 +
|}
 +
 +
 +
===Equivalence(⇔ or ≡)===
 +
 +
Case of equivalence. "P⇔Q" ≡ "(P→Q)∧(Q→P)"
 +
 +
{| border="1" class="wikitable" style="background-color:#ddf"
 +
! style="background:#ffdead;" | P 
 +
! style="background:#ffdead;" | Q 
 +
! style="background:#ffdead;" | P⇔Q 
 +
! style="background:#ffdead;" | P→Q 
 +
! style="background:#ffdead;" | Q→P 
 +
! style="background:#ffdead;" | (P→Q)∧(Q→P) 
 +
|-
 +
| 0
 +
| 0
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
|-
 +
| 0
 +
| 1
 +
| 0
 +
| 1
 +
| 0
 +
| 0
 +
|-
 +
| 1
 +
| 0
 +
| 0
 +
| 0
 +
| 1
 +
| 0
 +
|-
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
| 1
 +
|-
 +
|}
 +
== CAI Exercise ==
== CAI Exercise ==

Latest revision as of 08:34, 23 May 2014

Logic > Implication and equivalence

Contents

Contents

Overview

Implication(→)

"α→β" is "α implies β." or "if α then β."

0 means false, 1 means true, and ≡ means equivalent.

Case of implication. "P→Q" ≡ "¬P∨Q" ≡ "¬(P∧¬Q)"

 P   Q   P→Q   ¬P   ¬Q   ¬P∨Q   P∧¬Q   ¬(P∧¬Q) 
 0  0  1  1  1  1  0  1
 0  1  1  1  0  1  0  1
 1  0  0  0  1  0  1  0
 1  1  1  0  0  1  0  1


Equivalence(⇔ or ≡)

Case of equivalence. "P⇔Q" ≡ "(P→Q)∧(Q→P)"

 P   Q   P⇔Q   P→Q   Q→P   (P→Q)∧(Q→P) 
 0  0  1  1  1  1
 0  1  0  1  0  0
 1  0  0  0  1  0
 1  1  1  1  1  1


CAI Exercise

Personal tools
In other languages