Logic/Implication and equivalence
From Internet Web School
(Difference between revisions)
(Created page with 'Logic > Implication and equivalence == Contents == * Category:Mathematical logic(Wikipedia) * [[wikipedia:Boolean_algebra_(l…') |
|||
Line 7: | Line 7: | ||
* [[wikipedia:Material_conditional|Material conditional]] | * [[wikipedia:Material_conditional|Material conditional]] | ||
* [[wikipedia:If_and_only_if|If and only if]] | * [[wikipedia:If_and_only_if|If and only if]] | ||
+ | |||
+ | == Overview == | ||
+ | |||
+ | ===Implication(→)=== | ||
+ | |||
+ | "α→β" is "α implies β." or "if α then β." | ||
+ | |||
+ | 0 means false, 1 means true, and ≡ means equivalent. | ||
+ | |||
+ | Case of implication. "P→Q" ≡ "¬P∨Q" ≡ "¬(P∧¬Q)" | ||
+ | |||
+ | {| border="1" class="wikitable" style="background-color:#ddf" | ||
+ | ! style="background:#ffdead;" | P | ||
+ | ! style="background:#ffdead;" | Q | ||
+ | ! style="background:#ffdead;" | P→Q | ||
+ | ! style="background:#ffdead;" | ¬P | ||
+ | ! style="background:#ffdead;" | ¬Q | ||
+ | ! style="background:#ffdead;" | ¬P∨Q | ||
+ | ! style="background:#ffdead;" | P∧¬Q | ||
+ | ! style="background:#ffdead;" | ¬(P∧¬Q) | ||
+ | |- | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | |- | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | |- | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | |- | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | |||
+ | ===Equivalence(⇔ or ≡)=== | ||
+ | |||
+ | Case of equivalence. "P⇔Q" ≡ "(P→Q)∧(Q→P)" | ||
+ | |||
+ | {| border="1" class="wikitable" style="background-color:#ddf" | ||
+ | ! style="background:#ffdead;" | P | ||
+ | ! style="background:#ffdead;" | Q | ||
+ | ! style="background:#ffdead;" | P⇔Q | ||
+ | ! style="background:#ffdead;" | P→Q | ||
+ | ! style="background:#ffdead;" | Q→P | ||
+ | ! style="background:#ffdead;" | (P→Q)∧(Q→P) | ||
+ | |- | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | |- | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | |- | ||
+ | | 1 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 0 | ||
+ | | 1 | ||
+ | | 0 | ||
+ | |- | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | | 1 | ||
+ | |- | ||
+ | |} | ||
+ | |||
== CAI Exercise == | == CAI Exercise == |
Latest revision as of 08:34, 23 May 2014
Logic > Implication and equivalence
Contents |
Contents
Overview
Implication(→)
"α→β" is "α implies β." or "if α then β."
0 means false, 1 means true, and ≡ means equivalent.
Case of implication. "P→Q" ≡ "¬P∨Q" ≡ "¬(P∧¬Q)"
P | Q | P→Q | ¬P | ¬Q | ¬P∨Q | P∧¬Q | ¬(P∧¬Q) |
---|---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
Equivalence(⇔ or ≡)
Case of equivalence. "P⇔Q" ≡ "(P→Q)∧(Q→P)"
P | Q | P⇔Q | P→Q | Q→P | (P→Q)∧(Q→P) |
---|---|---|---|---|---|
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |