Logic/Inference by propositional logic

From Internet Web School

(Difference between revisions)
Jump to: navigation, search
(Created page with 'Logic > Inference by propositional logic == Contents == * Category:Mathematical logic(Wikipedia) * [[wikipedia:Propositional…')
 
(2 intermediate revisions not shown)
Line 5: Line 5:
* [[wikipedia:Category:Mathematical logic|Category:Mathematical logic(Wikipedia)]]   
* [[wikipedia:Category:Mathematical logic|Category:Mathematical logic(Wikipedia)]]   
* [[wikipedia:Propositional_calculus|Propositional calculus]]
* [[wikipedia:Propositional_calculus|Propositional calculus]]
 +
* [[wikipedia:Modus_ponens|Modus ponens]]
 +
 +
== Overview ==
 +
 +
===Inference operator(⊢)===
 +
 +
"α ⊢ β" means "assuming α, infer β.".
 +
 +
* Double Negation elimination : "¬¬α ⊢ α"
 +
* Conjunction introduction : "α,β ⊢ α ∧β" , "α,β ⊢ β∧α"
 +
* Conjunction elimination : "α∧β ⊢ α" , "α∧β ⊢ β"
 +
* Disjunction introduction : α ⊢ α∨β , α ⊢ β∨α
 +
* Disjunction elimination : α∨β,¬β ⊢ α , α∨β,¬α ⊢ β
 +
* modus ponens : α,α→β ⊢ β
== CAI Exercise ==
== CAI Exercise ==
Line 13: Line 27:
[[en:Logic/Inference by propositional logic]]
[[en:Logic/Inference by propositional logic]]
-
[[ja:論理学/命題論理]]
+
[[ja:論理学/命題論理による推論]]

Latest revision as of 08:35, 23 May 2014

Logic > Inference by propositional logic

Contents

Contents

Overview

Inference operator(⊢)

"α ⊢ β" means "assuming α, infer β.".

  • Double Negation elimination : "¬¬α ⊢ α"
  • Conjunction introduction : "α,β ⊢ α ∧β" , "α,β ⊢ β∧α"
  • Conjunction elimination : "α∧β ⊢ α" , "α∧β ⊢ β"
  • Disjunction introduction : α ⊢ α∨β , α ⊢ β∨α
  • Disjunction elimination : α∨β,¬β ⊢ α , α∨β,¬α ⊢ β
  • modus ponens : α,α→β ⊢ β

CAI Exercise

Personal tools
In other languages