Logic/Inference by propositional logic
From Internet Web School
(Difference between revisions)
Line 6: | Line 6: | ||
* [[wikipedia:Propositional_calculus|Propositional calculus]] | * [[wikipedia:Propositional_calculus|Propositional calculus]] | ||
* [[wikipedia:Modus_ponens|Modus ponens]] | * [[wikipedia:Modus_ponens|Modus ponens]] | ||
+ | |||
+ | == Overview == | ||
+ | |||
+ | ===Inference operator(⊢)=== | ||
+ | |||
+ | "α ⊢ β" means "assuming α, infer β.". | ||
+ | |||
+ | * Double Negation elimination : "¬¬α ⊢ α" | ||
+ | * Conjunction introduction : "α,β ⊢ α ∧β" , "α,β ⊢ β∧α" | ||
+ | * Conjunction elimination : "α∧β ⊢ α" , "α∧β ⊢ β" | ||
+ | * Disjunction introduction : α ⊢ α∨β , α ⊢ β∨α | ||
+ | * Disjunction elimination : α∨β,¬β ⊢ α , α∨β,¬α ⊢ β | ||
+ | * modus ponens : α,α→β ⊢ β | ||
== CAI Exercise == | == CAI Exercise == |
Latest revision as of 08:35, 23 May 2014
Logic > Inference by propositional logic
Contents |
Contents
Overview
Inference operator(⊢)
"α ⊢ β" means "assuming α, infer β.".
- Double Negation elimination : "¬¬α ⊢ α"
- Conjunction introduction : "α,β ⊢ α ∧β" , "α,β ⊢ β∧α"
- Conjunction elimination : "α∧β ⊢ α" , "α∧β ⊢ β"
- Disjunction introduction : α ⊢ α∨β , α ⊢ β∨α
- Disjunction elimination : α∨β,¬β ⊢ α , α∨β,¬α ⊢ β
- modus ponens : α,α→β ⊢ β